Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.169
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 2983-2994, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629559

RESUMEN

Taking a city in Guangdong Province as the research area, the concentration and spatial distribution characteristics of heavy metals in the surface soil were studied to clarify the situation of soil heavy metal pollution and priority control factors, providing basic data for the prevention and control of soil heavy metal pollution in the city. The content characteristics of heavy metals in 221 soil samples in the city were analyzed, and the potential health risk assessment and source analysis were carried out through the Monte Carlo model, the potential health risk assessment (HRA) model, and the PMF receptor model. It was found that heavy metals ω(As), ω(Hg), ω(Cd), ω(Pb), ω(Cr), ω(Cu), ω(Ni), and ω(Zn) in the soil of the city were 18.16, 0.43, 1.46, 68.57, 98.34, 64.19, 26.53, and 257.32 mg·kg-1, respectively, with a moderate to high degree of variation. Except for Ni concentration, the soil concentrations of other heavy metal elements exceeded the background values of soil in Guangdong Province to a certain extent, and the concentrations of Cd and Zn exceeded the national secondary standards, resulting in severe heavy metal pollution; the main sources of heavy metals were industrial sources, and natural parent materials, lead battery manufacturing, transportation, artificial cultivation, and pesticide and fertilizer inputs also had an undeniable impact on the accumulation of heavy metals in the soil. Heavy metals in the soil had a certain degree of tolerable carcinogenic health risk for both children and adults, whereas non-carcinogenic risks could be ignored. The potential health risk of children was greater than that of adults, and the main exposure route was through oral intake. The input sources of pesticides and fertilizers and As should be the main controlling factors for the health risks of heavy metals in the city's soil, followed by mixed sources and Cr. There were differences in the spatial distribution characteristics and relative pollution levels of heavy metals, and it is necessary to deepen zoning monitoring and control, strengthen soil pollution prevention and control, and reduce human input of heavy metals in soil.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Adulto , Humanos , Monitoreo del Ambiente , Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Medición de Riesgo , China
2.
Huan Jing Ke Xue ; 45(5): 3016-3026, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629562

RESUMEN

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.


Asunto(s)
Contaminantes del Suelo , Sorghum , Cadmio/análisis , Biodegradación Ambiental , Suelo , Arena , Ácido Cítrico , Contaminantes del Suelo/análisis , China , Grano Comestible/química
3.
Huan Jing Ke Xue ; 45(5): 3027-3036, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629563

RESUMEN

Biochar and modified biochar have been widely used as remediation materials in heavy metal-contaminated agricultural soils. In order to explore economical and effective materials for the remediation of cadmium (Cd)-contaminated acidic purple soil, distillers 'grains were converted into distillers' grains biochar (DGBC) and modified using nano-titanium dioxide (Nano-TiO2) to produce two types of modified DGBCs:TiO2/DGBC and Fe-TiO2/DGBC. A rice pot experiment was used to investigate the effects of different biochar types and application rates (1%, 3%, and 5%) on soil properties, nutrient content, Cd bioavailability, Cd forms, rice growth, and Cd accumulation. The results showed that:① DGBC application significantly increased soil pH, cation exchange capacity (CEC), and nutrient content, with TiO2/DGBC and Fe-TiO2/DGBC exhibiting better effects. ② DGBC and modified DGBCs transformed Cd from soluble to insoluble forms, increasing residual Cd by 1.22% to 18.46% compared to that in the control. Cd bioavailability in soil decreased significantly, with available cadmium being reduced by 11.81% to 23.67% for DGBC, 7.64% to 43.85% for TiO2/DGBC, and 19.75% to 55.82% for Fe-TiO2/DGBC. ③ DGBC and modified DGBCs increased rice grain yield, with the highest yields observed at a 3% application rate:30.60 g·pot-1 for DGBC, 37.85 g·pot-1 for TiO2/DGBC, and 39.10 g·pot-1 for Fe-TiO2/DGBC, representing 1.13, 1.40, and 1.44 times the control yield, respectively. Cd content in rice was significantly reduced, with grain Cd content ranging from 0.24 to 0.30 mg·kg-1 for DGBC, 0.16 to 0.26 mg·kg-1 for TiO2/DGBC, and 0.14 to 0.24 mg·kg-1 for Fe-TiO2/DGBC. Notably, Cd content in rice grains fell below the food safety limit of 0.2 mg·kg-1 (GB2762-2022) at 5% for TiO2/DGBC and 3% and 5% for Fe-TiO2/DGBC. In conclusion, Nano-TiO2 modified DGBC effectively reduced the bioavailability of soil Cd through its own adsorption and influence on soil Cd forms distribution, thus reducing the absorption of Cd by rice and simultaneously promoting rice growth and improving rice yield. It is a type of Cd-contaminated soil remediation material with a potential application prospect. The results can provide scientific basis for farmland restoration and agricultural safety production of Cd-contaminated acidic purple soil.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Oryza/química , Suelo/química , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Grano Comestible/química
4.
Wei Sheng Yan Jiu ; 53(2): 294-299, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604967

RESUMEN

OBJECTIVE: To establish an analytical method for determining the migration of 24 elements in Yixing clay pottery in 4% acetic acid simulated solution by inductively coupled plasma mass spectrometry. METHODS: Four types of Yixing clay pottery, including Yixing clay teapot, Yixing clay kettle, Yixing clay pot, and Yixing clay electric stew pot, were immersed in 4% acetic acid as a food simulant for testing. The migration amount of 24 elements in the migration solution was determined using inductively coupled plasma mass spectrometry. RESULTS: Lithium, magnesium, aluminum, iron, and barium elements with a mass concentration of 1000 µg/L; Lead, cadmium, total arsenic, chromium, nickel, copper, vanadium, manganese, antimony, tin, zinc, cobalt, molybdenum, silver, beryllium, thallium, titanium, and strontium elements within 100 µg/L there was a linear relationship within, the r value was between 0.998 739 and 0.999 989. Total mercury at 5.0 µg/L, there was a linear relationship within, the r value of 0.995 056. The detection limit of the elements measured by this method was between 0.5 and 45.0 µg/L, the recovery rate was 80.6%-108.9%, and the relative standard deviation was 1.0%-4.8%(n=6). A total of 32 samples of four types of Yixing clay pottery sold on the market, including teapots, boiling kettles, casseroles, and electric stewing pots, were tested. It was found that the migration of 16 elements, including beryllium, titanium, chromium, nickel, cobalt, zinc, silver, cadmium, antimony, total mercury, thallium, tin, copper, total arsenic, molybdenum, and lead, were lower than the quantitative limit. The element with the highest migration volume teapot was aluminum, magnesium, and barium; The kettle was aluminum and magnesium; Casserole was aluminum, magnesium, and lithium; The electric stew pot was aluminum. CONCLUSION: This method is easy to operate and has high accuracy, providing an effective and feasible detection method for the determination and evaluation of element migration in Yixing clay pottery.


Asunto(s)
Arsénico , Mercurio , Oligoelementos , Cobre , Molibdeno/análisis , Níquel , Arcilla , Magnesio , Aluminio/análisis , Cadmio/análisis , Bario/análisis , Titanio/análisis , Plata/análisis , Berilio/análisis , Estaño/análisis , Arsénico/análisis , Litio/análisis , Antimonio/análisis , Talio/análisis , Zinc , Cromo , Cobalto/análisis , Mercurio/análisis , Espectrometría de Masas , Acetatos , Oligoelementos/análisis
5.
Sci Rep ; 14(1): 8366, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600294

RESUMEN

Understanding heavy metals in rivers is crucial, as their presence and distribution impact water quality, ecosystem health, and human well-being. This study examined the presence and levels of nine heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in 16 surface water samples along the Chao Phraya River, identifying Fe, Mn, Zn, and Cr as predominant metals. Although average concentrations in both rainy and dry seasons generally adhered to WHO guidelines, Mn exceeded these limits yet remained within Thailand's acceptable standards. Seasonal variations were observed in the Chao Phraya River, and Spearman's correlation coefficient analysis established significant associations between season and concentrations of heavy metals. The water quality index (WQI) demonstrated varied water quality statuses at each sampling point along the Chao Phraya River, indicating poor conditions during the rainy season, further deteriorating to very poor conditions in the dry season. The hazard potential index (HPI) was employed to assess heavy metal contamination, revealing that during the dry season in the estuary area, the HPI value exceeded the critical threshold index, indicating the presence of heavy metal pollution in the water and unsuitable for consumption. Using the species sensitivity distribution model, an ecological risk assessment ranked the heavy metals' HC5 values as Pb > Zn > Cr > Cu > Hg > Cd > Ni, identifying nickel as the most detrimental and lead as the least toxic. Despite Cr and Zn showing a moderate risk, and Cu and Ni posing a high risk to aquatic organisms, the main contributors to ecological risk were identified as Cu, Ni, and Zn, suggesting a significant potential ecological risk in the Chao Phraya River's surface water. The results of this study provide fundamental insights that can direct future actions in preventing and managing heavy metal pollution in the river ecosystem.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Humanos , Cadmio/análisis , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Plomo/análisis , Mercurio/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Medición de Riesgo , Ríos , Tailandia , Contaminantes Químicos del Agua/análisis
6.
Environ Monit Assess ; 196(5): 420, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570413

RESUMEN

Monitoring and protecting freshwater habitats are paramount for a sustainable water management perspective. This study investigated potentially toxic elements (PTEs) in the potamic water of the Anday Stream Basin (Türkiye), Black Sea Region, for a hydrological year (from May 2020 to April 2021). Among PTEs, the highest average values were recorded for sodium (Na) at 41.3 mg/L and the lowest for mercury (Hg) at 0.009 µg/L and noted under quality guidelines. The stream was found to be at the level of "Low Heavy Metal Pollution" and "Low Contamination" based on the ecotoxicological risk indices. The highest calculated hazard quotient (HQ) value of 1.21E-02 for Cd was noted in the children via the dermal pathway and the lowest of 6.91E-06 for Fe in adults via the ingestion pathway. Results revealed a higher hazard index (HI) value of 1.50E-02 for Cd to children and the lowest of 1.98E-05 for Fe to adults. As a result of applying agricultural risk indices, the stream showed sodium adsorption ratio values less than 6 and was found to be "Excellent" for agriculture. However, the sodium percentage values were less than 20 and found "Permissible" and the magnesium hazard > 50 and noted as "Unsuitable" for agriculture. Statistical analysis revealed that natural factors mainly attributed to PTE contamination of the Anday Stream Basin.


Asunto(s)
Mercurio , Metales Pesados , Niño , Adulto , Humanos , Monitoreo del Ambiente/métodos , Agua/análisis , Ríos , Mar Negro , Turquia , Metales Pesados/análisis , Mercurio/análisis , Medición de Riesgo , Sodio/análisis , Cadmio/análisis
7.
Environ Monit Assess ; 196(5): 417, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570421

RESUMEN

Heavy metals can have significant impacts on human health due to their toxicity and potential to accumulate in the body over time. Some heavy metals, such as lead, cadmium, mercury, and arsenic, are particularly harmful even at low concentrations. The estimation of hazards of vegetable intake to human health as well as explore the of heavy metals accumulation in different vegetables (cucumbers, tomato, eggplant, and bell peppers) collected in Erbil city from different source locally and imported from nearby country are conducted. The heavy metals concentration (cooper, zinc, lead and cadmium) was measured and analyzed by inductively coupled plasma-optical emission spectrophotometry. The maximum concentration of Pb was 27.95 mg/kg and the minimum was 6.49 mg/kg; for Cd, the concentration was 1.43 and 0.99 mg/kg, 74.94 and 5.14 mg/kg for Zn; and for Cu, the result was 56.25 and 8.2 mg/kg for the maximum and minimum, which they are within limits described by Food Agricultural Organization, but more than health limits and health risks calculated by mean of hazard quotient (HQ) techniques for Cu and Pb which they are more than 1. The local sample that collected in Erbil city show less concentration of heavy metals and low HQ in comparison with imported samples. The carcinogenic risk study shows elevated risk of accumulative consuming of edible part of those plant which they exceed the permissible limit that is 10-6.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Verduras , Cadmio/análisis , Irak , Plomo , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis
8.
Sci Rep ; 14(1): 8140, 2024 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584184

RESUMEN

As the data concerning element concentrations in human milk (HM) samples and their intake by infants are lacking in Poland, the present study aimed to explore this issue. The material consisted of HM samples obtained from 30 exclusively breastfeeding mothers during 4-6 weeks postpartum. Additionally, to identify the factors that may potentially affect HM composition, information regarding maternal data (anthropometry, body composition, and diet) was also collected. Maternal diet was assessed with two methods-a food frequency questionnaire and 3-day dietary records. In total, 18 essential and non-essential elements were determined. For the elements analysis, we used inductively coupled plasma quadrupole mass spectrometry. Most of the elements (n = 11, 61%) were detected in all HM samples. In all HM samples tin concentration was higher (5.67 ± 2.39 µg/L) than the usual range reported by the World Health Organization (~ 1.0 µg/L). HM cadmium content was positively associated with maternal salty snacks intake (r = 0.502, p = 0.005), arsenic with whole-grain products intake (r = 0.37, p = 0.043), and mercury concentration with fruits and seeds/nuts consumption (r = 0.424, p = 0.042 and r = 0.378, p = 0.039, respectively). Higher HM lead concentration was predicted by maternal age (95% CI [0.94-0.97]), intake of fish (95% CI [1.01-1.03]), and vegetables (95% CI [1.02-1.06]). The highest infants' intake was observed for copper (35.24 ± 12.48) and the lowest for arsenic (0.076 ± 0.102). Infants' exposure to lead was associated with maternal frequency consumption of canned fish (p = 0.0045). There is a need to perform further research on this topic to maximize the benefits of breastfeeding by minimizing maternal and infant exposure to potentially toxic elements.


Asunto(s)
Arsénico , Leche Humana , Lactante , Femenino , Animales , Humanos , Leche Humana/química , Arsénico/análisis , Lactancia Materna , Cadmio/análisis , Plomo/análisis
9.
BMC Nephrol ; 25(1): 120, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570752

RESUMEN

BACKGROUND: Chronic Kidney Disease of unknown cause (CKDu) a disease of exclusion, and remains unexplained in various parts of the world, including India. Previous studies have reported mixed findings about the role of heavy metals or agrochemicals in CKDu. These studies compared CKDu with healthy controls but lacked subjects with CKD as controls. The purpose of this study was to test the hypothesis whether heavy metals, i.e. Arsenic (As), Cadmium (Cd), Lead (Pb), and Chromium (Cr) are associated with CKDu, in central India. METHODS: The study was conducted in a case-control manner at a tertiary care hospital. CKDu cases (n = 60) were compared with CKD (n = 62) and healthy subjects (n = 54). Blood and urine levels of As, Cd, Pb, and Cr were measured by Inductively Coupled Plasma- Optical Emission Spectrometry. Pesticide use, painkillers, smoking, and alcohol addiction were also evaluated. The median blood and urine metal levels were compared among the groups by the Kruskal-Wallis rank sum test. RESULTS: CKDu had significantly higher pesticide and surface water usage as a source of drinking water. Blood As levels (median, IQR) were significantly higher in CKDu 91.97 (1.3-132.7) µg/L compared to CKD 4.5 (0.0-58.8) µg/L and healthy subjects 39.01 (4.8-67.4) µg/L (p < 0.001) On multinominal regression age and sex adjusted blood As was independently associated with CKDu[ OR 1.013 (95%CI 1.003-1.024) P < .05].Blood and urinary Cd, Pb, and Cr were higher in CKD compared to CKDu (p > .05). Urinary Cd, Pb and Cr were undetectable in healthy subjects and were significantly higher in CKDu and CKD compared to healthy subjects (P = < 0.001). There was a significant correlation of Cd, Pb and Cr in blood and urine with each other in CKDu and CKD subjects as compared to healthy subjects. Surface water use also associated with CKDu [OR 3.178 (95%CI 1.029-9.818) p < .05). CONCLUSION: The study showed an independent association of age and sex adjusted blood As with CKDu in this Indian cohort. Subjects with renal dysfunction (CKDu and CKD) were found to have significantly higher metal burden of Pb, Cd, As, and Cr as compared to healthy controls. CKDu subjects had significantly higher pesticide and surface water usage, which may be the source of differential As exposure in these subjects.


Asunto(s)
Arsénico , Agua Potable , Metales Pesados , Plaguicidas , Insuficiencia Renal Crónica , Humanos , Cadmio/análisis , Estudios de Casos y Controles , Plomo , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/etiología , Arsénico/análisis , Cromo
10.
Ecotoxicol Environ Saf ; 275: 116275, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564858

RESUMEN

Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160 µM) and Zn (800 µM) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160 µM + 200 µM) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160 µM + 800 µM) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.


Asunto(s)
Iris (Planta) , Metales Pesados , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Zinc/toxicidad , Desarrollo de la Planta , Contaminantes del Suelo/toxicidad
11.
Sci Rep ; 14(1): 8920, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637588

RESUMEN

Land transportation is a major source of heavy metal contamination along the roadside, posing significant risks to human health through inhalation, oral ingestion, and dermal contact. Therefore, this study has been designed to determine the concentrations of vehicular released heavy metals (Cd, Pb, Ni, and Cu) in roadside soil and leaves of two commonly growing native plant species (Calotropis procera and Nerium oleander).Two busy roads i.e., Lahore-Okara road (N-5) and Okara-Faisalabad roads (OFR) in Punjab, Pakistan, were selected for the study. The data were collected from five sites along each road during four seasons. Control samples were collected ~ 50 m away from road. The metal content i.e. lead (Pb), cadmium (Cd) nickel (Ni) and copper (Cu) were determined in the plant leaves and soil by using Atomic Absorption Spectrophotometer (AAS). Significantly high amount of all studied heavy metals were observed in soil and plant leaves along both roads in contrast to control ones. The mean concentration of metals in soil ranged as Cd (2.20-6.83 mg/kg), Pb (4.53-15.29 mg/kg), Ni (29.78-101.26 mg/kg), and Cu (61.68-138.46 mg/kg) and in plant leaves Cd (0.093-0.53 mg/kg), Pb (4.31-16.34 mg/kg), Ni (4.13-16.34 mg/kg) and Cu (2.98-32.74 mg/kg). Among roads, higher metal contamination was noted along N-5 road. Significant temporal variations were also noted in metal contamination along both roads. The order of metal contamination in soil and plant leaves in different seasons was summer > autumn > spring > winter. Furthermore, the metal accumulation potential of Calotropis procera was higher than that of Nerium oleander. Therefore, for sustainable management of metal contamination, the plantation of Calotropis procera is recommended along roadsides.


Asunto(s)
Calotropis , Metales Pesados , Nerium , Contaminantes del Suelo , Humanos , Cadmio/análisis , Suelo , Biodegradación Ambiental , Plomo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Níquel , Plantas , Monitoreo del Ambiente
12.
Artículo en Inglés | MEDLINE | ID: mdl-38613167

RESUMEN

The study aimed to explore the association between five heavy metals exposure (Cadmium, Lead, Mercury, Manganese, and Selenium) and mortality [all-cause, cardiovascular disease (CVD), and cancer-related]. We integrated the data into the National Health and Nutrition Examination Survey from 2011 to 2018 years. A total of 16,092 participants were recruited. The link between heavy metals exposure and mortality was analyzed by constructing a restricted cubic spline (RCS) curve, Cox proportional hazard regression model, and subgroup analysis. The RCS curve was used to show a positive linear relationship between Cadmium, Lead, and all-cause mortality. In contrast, there was a negative linear correlation between Mercury and all-cause mortality. Additionally, Manganese and Selenium also had a J-shaped and L-shaped link with all-cause mortality. The positive linear, positive linear, negative liner, J-shaped, and L-shaped relationships were observed for Cadmium, Lead, Mercury, Manganese, and Selenium and CVD mortality, respectively. Cadmium, Lead, Mercury, and Selenium were observed to exhibit positive linear, U-shaped, negative linear, and L-shaped relationships with cancer-related mortality, respectively. There was an increase and then a decrease in the link between Manganese and cancer-related morality. This study revealed the correlation between the content of different elements and different types of mortality in the U.S. general population.


Asunto(s)
Enfermedades Cardiovasculares , Mercurio , Metales Pesados , Neoplasias , Selenio , Humanos , Cadmio/análisis , Manganeso , Selenio/análisis , Causas de Muerte , Encuestas Nutricionales , Estudios de Cohortes , Mercurio/análisis
13.
Open Vet J ; 14(1): 266-273, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633190

RESUMEN

Background: Canned fish products are widely consumed in Egypt, particularly for protein-rich meals that are quick to prepare and low in calories. Canned fish products are contaminated with toxic metals from the fish itself or from canning materials during processing. Aim: To determine the residual levels of cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), aluminum (Al), and Tin (Sn) in some canned fish products obtained from retail shops in Mansoura, Egypt. Furthermore, noncarcinogenic health risks evaluation for the Egyptian population due to hazardous metal oral intake. Methods: One hundred canned fish products (20 each of herring, mackerel, salmon, sardine, and tuna) were collected from May to September 2023, and canned fish products were obtained from Mansoura city markets in Egypt. Samples were digested in a solution composed of 60% nitric acid and 40% perchloric acid, and then an atomic absorption spectrophotometer was used for the detection of selected toxic metals. Results: It was found that the residual level of hazardous metals exceeded the acceptability level established in the European Union for Pb, Cd, and Hg by 20%, 10%, and 10%, 15%, 5%, and 20%, 35%, 30%, and 45%, 25%, 25%, and 40%, in examined herring, mackerel, sardine, and tuna, respectively. In contrast, all salmon samples were accepted for Pb and Hg, and only 5% were not accepted due to a higher Cd level than the maximum permissible limit. The average estimated daily intake of (EDI) is below the tolerable daily intakes (TDIs) for all metals. Comparatively, the EDI of Hg was 0.265 µg/kg body weight (B.W) exceeded TDIs 0.228 µg/kg B.W. The hazard index for canned tuna and sardines is more than one. Conclusion: Canned fish products are contaminated with a variety of toxic metals, especially sardine and tuna. Therefore, it is advised to decrease the consumption rate of such fish products.


Asunto(s)
Cadmio , Mercurio , Animales , Cadmio/análisis , Egipto , Plomo , Productos Pesqueros/análisis , Mercurio/análisis , Medición de Riesgo , Peces , Atún
14.
Sci Rep ; 14(1): 8408, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600156

RESUMEN

The current study was conducted on the inhabitants living in the area adjacent to the Hudiara drain using bore water and vegetables adjacent to the Hudiara drain. Toxic heavy metals badly affect human health because of industrial environmental contamination. Particularly hundreds of millions of individuals globally have faced the consequences of consuming water and food tainted with pollutants. Concentrations of heavy metals in human blood were elevated in Hudiara drainings in Lahore city, Pakistan, due to highly polluted industrial effluents. The study determined the health effects of high levels of heavy metals (Cd, Cu, Zn, Fe, Pb, Ni, Hg, Cr) on residents of the Hudiara draining area, including serum MDA, 8-Isoprostane, 8-hydroxyguanosine, and creatinine levels. An absorption spectrophotometer was used to determine heavy metals in wate water, drinking water, soil, plants and human beings blood sampleas and ELISA kits were used to assess the level of 8-hydroxyguanosine, MDA, 8-Isoprostane in plasma serum creatinine level. Waste water samples, irrigation water samples, drinking water samples, Soil samples, Plants samples and blood specimens of adult of different weights and ages were collected from the polluted area of the Hudiara drain (Laloo and Mohanwal), and control samples were obtained from the unpolluted site Sheiikhpura, 60 km away from the site. Toxic heavy metals in blood damage the cell membrane and DNA structures, increasing the 8-hydroxyguanosine, MDA, creatinine, and 8-Isoprostane. Toxic metals contaminated bore water and vegetables, resulting in increased levels of creatinine, MDA, Isoprostane, and 8-hydroxy-2-guanosine in the blood of inhabitants from the adjacent area Hudiara drain compared to the control group. In addition,. This study also investigated heavy metal concentrations in meat and milk samples from buffaloes, cows, and goats. In meat, cow samples showed the highest Cd, Cu, Fe and Mn concentrations. In milk also, cows exhibited elevated Cu and Fe levels compared to goats. The results highlight species-specific variations in heavy metal accumulation, emphasizing the need for targeted monitoring to address potential health risks. The significant difference between the two groups i.e., the control group and the affected group, in all traits of the respondents (weight, age, heavy metal values MDA, 8-Isoprostane, 8-hydroxyguaniosine, and serum creatinine level). Pearson's correlation coefficient was calculated. The study has shown that the level of serum MDA, 8-Isoprostane, 8-hydroxyguaniosine, or creatinine has not significantly correlated with age, so it is independent of age. This study has proved that in Pakistan, the selected area of Lahore in the villages of Laloo and Mohanwal, excess of heavy metals in the human body damages the DNA and increases the level of 8-Isoprostane, MDA, creatinine, and 8-hydroxyguaniosine. As a result, National and international cooperation must take major steps to control exposure to heavy metals.


Asunto(s)
Agua Potable , Metales Pesados , Contaminantes del Suelo , Adulto , Humanos , Animales , Bovinos , Creatinina/análisis , Contaminantes del Suelo/metabolismo , Pakistán , Agua Potable/análisis , Cadmio/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Intoxicación por Metales Pesados , Suelo/química , Verduras/metabolismo , Daño del ADN , ADN , Cabras/metabolismo , Medición de Riesgo
15.
Environ Monit Assess ; 196(5): 429, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575685

RESUMEN

Water, as an indispensable constituent of life, serves as the primary source of sustenance for all living things on Earth. The contamination of surface water with heavy metals poses a significant global health risk to humans, animals, and plants. Sharkiya Governorate, situated in the East Nile Delta region of Egypt, is particularly susceptible to surface water pollution due to various industrial, agricultural, and urban activities. The Bahr Mouse Stream, crucial for providing potable water and supporting irrigation activities in Sharkiya Governorate, caters to a population of approximately 7.7 million inhabitants. Unfortunately, this vital water source is exposed to many illegal encroachments that may cause pollution and deteriorate the water resource quality. In a comprehensive study conducted over two consecutive seasons (2019-2020), a total of 38 surface water samples were taken to assess the quantity of heavy metals in surface water destined for human consumption and other applications, supported by indices and statistics. The assessment utilized flame atomic absorption spectrophotometry to determine the concentration of key heavy metals including iron (Fe), manganese (Mn), cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), nickel (Ni), cobalt (Co), and chromium (Cr). The calculated mean value of the Water Quality Index (WQI) was found to be 39.1 during the winter season and 28.05 during the summer season. This value suggests that the surface water maintains good quality and is suitable for drinking purposes. Furthermore, the analysis indicated that the concentrations of heavy metals in the study area were below the recommended limits set by the World Health Organization and fell within the safe threshold prescribed by Egyptian legislation. Despite the identification of localized instances of illegal activities in certain areas, such as unauthorized discharges, the findings affirm that the Bahr Mouse stream is devoid of heavy metal pollution. This underscores the importance of continued vigilance and regulatory enforcement to preserve the integrity of these vital water resources.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Egipto , Ríos , Monitoreo del Ambiente , Metales Pesados/análisis , Cadmio/análisis , Calidad del Agua , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
16.
PeerJ ; 12: e17200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577416

RESUMEN

Background: Dayu County, a major tungsten producer in China, experiences severe heavy metal pollution. This study evaluated the pollution status, the accumulation characteristics in paddy rice, and the potential ecological risks of heavy metals in agricutural soils near tungsten mining areas of Dayu County. Furthermore, the impacts of soil properties on the accumulation of heavy metals in soil were explored. Methods: The geo-accumulation index (Igeo), the contamination factor (CF), and the pollution load index (PLI) were used to evaluate the pollution status of metals (As, Cd, Cu, Cr, Pb, Mo, W, and Zn) in soils. The ecological risk factor (RI) was used to assess the potential ecological risks of heavy metals in soil. The health risks and accumulation of heavy metals in paddy rice were evaluated using the health risk index and the translocation factor (TF), respectively. Pearson's correlation coefficient was used to discuss the influence of soil factors on heavy metal contents in soil. Results: The concentrations of metals exceeded the respective average background values for soils (As: 10.4, Cd: 0.10, Cu: 20.8, Cr: 48.0, Pb: 32.1, Mo: 0.30, W: 4.93, Zn: 69.0, mg/kg). The levels of As, Cd, Mo, and tungsten(W) exceeded the risk screening values for Chinese agricultural soil contamination and the Dutch standard. The mean concentrations of the eight tested heavy metals followed the order FJ-S > QL > FJ-N > HL > CJ-E > CJ-W, with a significant distribution throughout the Zhangjiang River basin. Heavy metals, especially Cd, were enriched in paddy rice. The Igeo and CF assessment indicated that the soil was moderately to heavily polluted by Mo, W and Cd, and the PLI assessment indicated the the sites of FJ-S and QL were extremely severely polluted due to the contribution of Cd, Mo and W. The RI results indicated that Cd posed the highest risk near tungsten mining areas. The non-carcinogenic and total carcinogenic risks were above the threshold values (non-carcinogenic risk by HQ > 1, carcinogenic risks by CR > 1 × 10-4 a-1) for As and Cd. Correlation analysis indicated that K2O, Na2O, and CaO are main factors affecting the accumulation and migration of heavy metals in soils and plants. Our findings reveal significant contamination of soils and crops with heavy metals, especially Cd, Mo, and W, near mining areas, highlighting serious health risks. This emphasizes the need for immediate remedial actions and the implementation of stringent environmental policies to safeguard health and the environment.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Suelo , Tungsteno/análisis , Cadmio/análisis , Plomo/análisis , Monitoreo del Ambiente , Medición de Riesgo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Minería , China
17.
Environ Geochem Health ; 46(5): 150, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578528

RESUMEN

This study examined levels of lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and arsenic (As) in blood, hair, and nails of 18 brick kiln workers from three brick kiln units located around a metropolitan city, Lahore, Pakistan. All the trace elements except Hg and As were detected in the studied matrices of Brick kiln workers. In general, brick kiln workers reflect the highest concentration of Pb, followed by Cd, Cr, and Cu. Of the pollutants analyzed, Pb has the highest mean (min-max) concentrations at 0.35 (0.09-0.65) in blood (µg/mL), 0.34 (0.14-0.71) in hairs (µg/g), and 0.44 (0.32-0.59) in nails (µg/g) of brick kiln workers. Following Pb, the trend was Cd 0.17 (0.10-0.24), Cu 0.11(0.03-0.27), and Cr 0.07 (0.04-0.08) in blood (µg/mL), followed by Cr 0.11(0.05-0.20), Cd 0.09 (0.03-0.13), and Cu 0.08 (0.04-0.16) in hairs (µg/g) and Cu 0.16 (0.05-0.36), Cd 0.13 (0.11-0.17), and Cr 0.10 (0.05-0.14) in nails (µg/g) respectively. Relatively higher concentrations of metals and other trace elements in blood depicts recent dietary exposure. The difference of trace elements except Pb was non-significant (P > 0.05) among studied matrices of workers as well as between Zigzag and traditional exhaust-based brick kilns. The concentrations of Pb, Cd and Cr in blood of brick kilns workers are higher than the values reported to cause health problems in human populations. It is concluded that chronic exposure to metals and other trace elements may pose some serious health risks to brick kiln workers which needs to be addressed immediately to avoid future worst-case scenarios.


Asunto(s)
Arsénico , Mercurio , Metales Pesados , Oligoelementos , Humanos , Oligoelementos/análisis , Metales Pesados/análisis , Cadmio/análisis , Pakistán , Plomo , Cromo/análisis , Arsénico/toxicidad , Arsénico/análisis , Monitoreo del Ambiente
18.
Sci Total Environ ; 926: 171859, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518825

RESUMEN

Environmental pollution of heavy metal(loid)s (HMs) caused adverse impacts, has become one of the emerging concerns and challenges worldwide. Metal(loid)s can pose significant threats to living organisms even when present in trace levels within environmental matrices. Extended exposure to these substances can lead to adverse health consequences in humans. Removing HM-contaminated water and moving toward sustainable development goals (SDGs) is critical. In this mission, biochar has recently gained attention in the environmental sector as a green and alternative material for wastewater removal. This work provides a comprehensive analysis of the remediation of typical HMs by biochars, associated with an understanding of remediation mechanisms, and gives practical solutions for ecologically sustainable. Applying engineered biochar in various fields, especially with nanoscale biochar-aided wastewater treatment approaches, can eliminate hazardous metal(loid) contaminants, highlighting an environmentally friendly and low-cost method. Surface modification of engineered biochar with nanomaterials is a potential strategy that positively influences its sorption capacity to remove contaminants. The research findings highlighted the biochars' ability to adsorb HM ions based on increased specific surface area (SSA), heightened porosity, and forming inner-sphere complexes with oxygen-rich groups. Utilizing biochar modification emerged as a viable approach for addressing lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), and chromium (Cr) pollution in aqueous environments. Most biochars investigated demonstrated a removal efficiency >90 % (Cd, As, Hg) and can reach an impressive 99 % (Pb and Cr). Furthermore, biochar and advanced engineered applications are also considered alternative solutions based on the circular economy.


Asunto(s)
Arsénico , Mercurio , Metales Pesados , Humanos , Aguas Residuales , Cadmio/análisis , Desarrollo Sostenible , Plomo/análisis , Metales Pesados/análisis , Carbón Orgánico , Arsénico/análisis , Mercurio/análisis , Cromo/análisis , Contaminación del Agua/análisis , Suelo
19.
Sci Total Environ ; 926: 171824, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521273

RESUMEN

Photosynthetic bacteria (PSB) are suitable to live and remediate cadmium (Cd) in the slightly oxygenated or anaerobic flooding paddy field. However, there is currently limited study on the inhibition of Cd accumulation in rice by PSB, and the relevant mechanisms has yet to be elucidated. In the current study, we firstly used Rhodopseudomonas palustris SC06 (a typical PSB) as research target and combined physiology, biochemistry, microbiome and metabolome to evaluate the mechanisms of remeding Cd pollution in paddy field and inhibiting Cd accumulation in rice. Microbiome analysis results revealed that intensive inoculation with R. palustris SC06 successfully survived and multiplied in flooding paddy soil, and significantly increased the relatively abundance of anaerobic bacteria including Desulfobacterota, Anaerolineaceae, Geobacteraceae, and Gemmatimonadaceae by 46.40 %, 45.00 %, 50.12 %, and 21.30 %, respectively. Simultaneously, the structure of microbial community was regulated to maintain relative stability in the rhizosphere soil of rice under Cd stress. In turn, these bacteria communities reduced bioavailable Cd and enhanced residual Cd in soil, and induced the upregulation of sugar and organic acids in the rice roots, which further inhibited Cd uptake in rice seedlings, and dramatically improved the photosynthetic efficiency in the leaves and the activities of antioxidative enzymes in the roots. Finally, Cd content of the roots, stems, leaves, and grains significantly decreased by 38.14 %, 69.10 %, 83.40 %, and 37.24 % comparing with the control, respectively. This study provides a new strategy for the remediation of Cd-contaminated flooding paddy fields and the safe production of rice.


Asunto(s)
Oryza , Rhodopseudomonas , Contaminantes del Suelo , Cadmio/análisis , Oryza/química , Disponibilidad Biológica , Suelo/química , Contaminantes del Suelo/análisis
20.
Sci Total Environ ; 926: 171856, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522531

RESUMEN

Optimizing planting spacing is a common agricultural practice for enhancing rice growth. However, its effect on the accumulation of cadmium (Cd) and phenanthrene (Phen) in soil-rice systems and the response mechanisms of rhizobacteria to co-contaminants remain unclear. This study found that reducing rice planting spacing to 5 cm and 10 cm significantly decreased the bioavailability of Cd (by 7.9 %-29.5 %) and Phen (by 12.9 %-47.6 %) in the rhizosphere soil by converting them into insoluble forms. The increased accumulation of Cd and Phen in roots and iron plaques (IPs) ultimately led to decreased Cd (by 32.2 %-39.9 %) and Phen (by 4.2 %-17.3 %) levels in brown rice, and also significantly affected the composition of rhizobacteria. Specifically, reducing rice planting spacing increased the abundance of low-abundance but core rhizobacteria in the rhizosphere soil and IPs, including Bacillus, Clostridium, Sphingomonas, Paenibacillus, and Leifsonia. These low-abundance but core rhizobacteria exhibited enhanced metabolic capacities for Cd and Phen, accompanied by increased abundances of Cd-resistance genes (e.g., czcC and czcB) and Phen-degradation genes (e.g., pahE4 and pahE1) within the rhizosphere soil and IPs. Reduced planting spacing had no noticeable impact on rice biomass. These findings provide new insights into the role of low-abundance but core rhizobacterial communities in Cd and Phen uptake by rice, highlighting the potential of reduced planting spacing as an eco-friendly strategy for ensuring the safety of rice production on contaminated paddy soils.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Hierro/análisis , Suelo , Rizosfera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...